Intercomparison Experiment of Water-Insoluble Carbonaceous Particles in Snow in a High-Mountain Environment (1598 m a.s.l.)

GEOSCIENCES(2022)

引用 1|浏览19
暂无评分
摘要
The harmonization of sampling, sample preparation and laboratory analysis methods to detect carbon compounds in snow requires detailed documentation of those methods and their uncertainties. Moreover, intercomparison experiments are needed to reveal differences and quantify the uncertainties further. Here, we document our sampling, filtering, and analysis protocols used in the intercomparison experiment from three laboratories to detect water-insoluble carbon in seasonal surface snow in the high-mountain environment at Kolm Saigurn (47.067842 degrees N, 12.98394 degrees E, alt 1598 m a.s.l.), Austria. The participating laboratories were TU Wien (Austria), the University of Florence (Italy), and the Finnish Meteorological Institute (Finland). For the carbon analysis, the NIOSH5040 and EUSAAR2 protocols of the OCEC thermal-optical method were used. The median of the measured concentrations of total carbon (TC) was 323 ppb, organic carbon (OC) 308 ppb, and elemental carbon (EC) 16 ppb. The methods and protocols used in this experiment did not reveal large differences between the laboratories, and the TC, OC, and EC values of four inter-comparison locations, five meters apart, did not show meter-scale horizontal variability in surface snow. The results suggest that the presented methods are applicable for future research and monitoring of carbonaceous particles in snow. Moreover, a recommendation on the key parameters that an intercomparison experiment participant should be asked for is presented to help future investigations on carbonaceous particles in snow. The work contributes to the harmonization of the methods for measuring the snow chemistry of seasonal snow deposited on the ground.
更多
查看译文
关键词
snow, carbon, black carbon, elemental carbon, organic carbon, brown carbon, total carbon, intercomparison, thermal-optical method, protocol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要