Optimization of an Electrochemical Gas Separation and Inerting System

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2022)

引用 0|浏览3
暂无评分
摘要
Aircraft fuel tank inerting is typically accomplished by supplying nitrogen enriched air (NEA) into the ullage (volume of air above the fuel level in the tank). We have developed a novel on-board electrochemical gas separation and inerting system (EGSIS) to generate NEA for fuel tank inerting. EGSIS is an electrically powered system that functionally combines a proton exchange membrane (PEM) fuel cell cathode with an electrolyzer anode. Water management is important in such a PEM-based system because proton transfer requires proper hydration of the membrane. Extremes of both dryout and flooding conditions should be avoided for optimal EGSIS performance. Previous single-cell EGSIS experiments revealed that supplying liquid water at the anode will maintain sufficient membrane hydration even when the system is operated under dry cathode conditions. However, it was difficult to avoid flooding at low cathode air stoichiometries when parallel flow field channels were employed. Here, we implement various strategies to optimize EGSIS performance such as using serpentine and interdigitated flow field channels, as well as a double-layer gas diffusion layer with graded hydrophobicity to mitigate flooding and improve water management. We also present a theoretical analysis of various stack configurations for a practical EGSIS module.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要