Performance enrichment of hybrid photovoltaic thermal collector with different nano-fluids

ENERGY & ENVIRONMENT(2022)

引用 3|浏览0
暂无评分
摘要
This work manifests the influence of different nanoparticles on the photovoltaic-thermal (PVT) system. The hybrid PVT (hPVT) systems provide thermo-electric energy by utilizing the module heat. The module heat is recovered for controlling the cell temperature using coolant in the channel. This work examines the impact of the type and volume concentration of different nano-fluids on the cell temperature, outlet temperature, thermo-electric efficiency of hPVT collectors. Copper (Cu), titanium dioxide (TiO2), and silicon dioxide (SiO2) dispersed in pure water are considered nano-fluids in this study. The investigation reveals that the outcomes of the PVT collector with copper-water as nano-fluid are superior to the other nano-fluids considered in the study. At 0.012 kg/s mass flow rate (MFR), the thermo-electric efficiency of the hPVT collector is 1.645% and 6.239% higher than the thermo-electric efficiency of the PVT at an MFR of 0.002 kg/s. It is also observed that with a 4% vol. concentration of Cu in the base fluid, the thermo-electric efficiency is considerably better than the efficiency at 2% and base fluid.
更多
查看译文
关键词
Nano-fluid, hybrid PVT (hPVT) collector, thermal efficiency, electrical efficiency, outlet temperature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要