Performance of a Prototype Boom Sprayer for Bed-Grown Carrots Based on Canopy Deposition Optimization, Ground Losses and Spray Drift Potential Mitigation in Semi-Field Conditions

APPLIED SCIENCES-BASEL(2022)

Cited 2|Views10
No score
Abstract
The H2020-project OPTIMA concept of smart sprayer relies on several functionalities, including variable nozzle spacing for bed-grown carrots, based on an air-assisted boom sprayer. A prototype boom was designed and evaluated though canopy deposition, ground losses, and spray drift potential. Four bed spray configurations, including various nozzle types, angles, and sizes (XR8004, combination of AIUB8504/AI11004, AI8004, and XR8002) at the most appropriate nozzle spacing and height, were tested and compared to a broadcast application (XR11004). Deposition measurements were performed on carrots in bins at early and full-grown stages with respective target zone width of 1.4 m and 2.2 m. Spray drift potential measurements were performed following ISO 22401, 2015. The spray boom was equipped with an air sleeve providing different air speeds (0, 4, 8 m s(-1)). The relative depositions at both growth stages showed a significant effect of spray configuration and lowest values were found for the broadcast application. The configurations consisting of air inclusion nozzles generated the lowest drift potential compared to the broadcast application, although not significantly different. Bed spray configurations can thus improve canopy depositions and spray drift potential compared to a conventional broadcast application when the boom height and the nozzle spacing are adjusted to the growth stage.
More
Translated text
Key words
bed-grown crop, air support, spray deposition, spray drift potential, smart sprayer, nozzle type
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined