Investigation of Specimen Size Effects on P-Quantile Diagrams and Normal Distributions of Critical Flaw Strengths in Fiber Tows

JOURNAL OF COMPOSITES SCIENCE(2022)

引用 2|浏览6
暂无评分
摘要
The present paper proposes a model of the specimen size effect on the critical flaw strength distribution in fiber tows for composite reinforcement. The model is based on the basic assumption of brittle fracture that the failure probability at a given strength increases with specimen size in the p-quantile vs. strength relation and on the normal distribution. Empirical results derived from force-strain curves determined on tows made of 1000 and 500 Nicalon SiC filaments and with various gauge lengths show some discrepancy with predictions using the model. The empirical p-quantile diagrams and cumulative distributions of critical flaw strengths exhibited excellent reproducibility at longer gauge lengths, which suggests the absence of a size effect above a critical tow size. The reproducibility of flaw strength distributions at gauge lengths above 60 mm and the higher strengths obtained at lower gauge lengths despite structural effects were related to the features of the critical flaw distribution in tows of parallel fibers.
更多
查看译文
关键词
fiber,tow,fracture,strength,flaw,normal distribution,Weibull distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要