Biomechanical Analysis of the External Fixation in a Lumbar Fracture Model: A Finite Element Study

Journal of Medical and Biological Engineering(2022)

引用 1|浏览4
暂无评分
摘要
Purpose This study aimed to investigate the biomechanical characteristics of the external spinal fixation for treating lumbar fracture through finite element analysis (FEA) and provide a theoretical basis for its further application. Methods Two different models of L3 fracture fixed with the external spinal fixation and the internal fixation system respectively were constructed. The ROM, maximum stresses at L3, and the screws of the two models were measured under load control. Subsequently, the applied torque, the maximum stressed at L3, L1/2, L2/3, L3/4, L4/5 discs and the screws were analyzed under displacement control. Results Under load control, the external fixation model reserved more ROM than the internal fixation model (40.4–48.0% vs 30.5–41.0%). Compared to the internal fixation model, the maximum stresses at L3 and screws in the external fixation model were increased. Under displacement control, the external fixation model required fewer moments (N·mm) than the internal fixation model (flexion: 7500 vs 12,294; extension: 7500 vs 9027). Further, the maximum stresses at L3 and the screws in the external fixation model were greater than those of the internal fixation model, while the maximum stresses at the upper and lower adjacent discs of fixed segments were less than the internal fixation model. Conclusion Compared to the internal fixation system, the external fixation has a better stress distribution with the greater overall mobility. It theoretically reduces the stress concentration of the adjacent discs and the stress shielding of the fractured vertebral body.
更多
查看译文
关键词
External fixation, Finite element analysis, Lumbar fracture, Biomechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要