Experimental and theoretical study of weakly coherent mode in I-mode edge plasmas in the EAST tokamak

NUCLEAR FUSION(2022)

引用 0|浏览47
暂无评分
摘要
The I-mode is a promising operation mode for fusion in the future, featuring high-temperature and low-density confinement, but the reason why the temperature and density are decoupled remains an important aspect to be explored. The experimental results from the experimental advanced superconducting tokamak (EAST) showed that the weakly coherent mode (WCM) is directly related to sustaining the I-mode and that the peak amplitude of the WCM is proportional to the temperature in the pedestal. Simulating the experimental data from EAST with the six-field model of BOUT++, we find a density perturbation close to the frequency of the WCM observed in the experiment. By testing all the physical terms in this model, we find that the density perturbation and particle transport are directly related to the drift Alfven wave (DAW) mode. We also use the SymPIC program (Xiao et al Plasma Sci. Technol. 20 110501; Phys. Plasmas 22 112504; Plasma Sci. Technol. 23 055102) to simulate the same experimental data and find that the frequency range of the WCM is close to both experimental and BOUT++ results. Therefore, the WCM of the I-mode can be considered to be driven by the DAW, which helps improve the transport of the I-mode.
更多
查看译文
关键词
I-mode, DAW, WCM, EAST
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要