Transient Pressure Behavior of Volume Fracturing Horizontal Wells in Fractured Stress-Sensitive Tight Oil Reservoirs

PROCESSES(2022)

Cited 2|Views21
No score
Abstract
Tight oil reservoirs tend to contain more natural fractures, and the presence of natural fractures leads to a greater stress sensitivity in tight oil reservoirs. It is a very challenging task to model the seepage in the volume fracturing horizontal wells considering the stress-sensitive effects. Based on the Laplace transform, Perturbation transform and Stefest numerical inversion, this paper establishes a horizontal well seepage model for volume fracturing in fractured stress-sensitive tight oil reservoirs. This model allows us to analyze and study the effect of stress sensitivity, fracture interference, dual media and complex fracture network on seepage flow in tight oil reservoirs. We apply the model to delineate the seepage stages of volume fracturing horizontal wells, it can be divided into seven seepage stages I wellbore storage flow, II surface flow stage, III transition flow, IV natural fracture system proposed radial flow, V interporosity flow, VI system proposed radial flow and VII stress-sensitive flow stage. Wellbore storage coefficient mainly affects the flow in the wellbore storage stage. The larger the wellbore storage coefficient is, the longer the duration of wellbore storage flow will be. The higher the skin coefficient is, the greater the pressure drop is. The storage capacity ratio has a greater influence on the flow before the occurrence of channeling flow, and the "groove" depth on the derivative curve of dimensionless pressure drop becomes shallower with the increase in storage capacity ratio. The higher the channeling coefficient is, the earlier the channeling occurs from the matrix system to the natural fracture system and the more leftwing the "groove" position is.
More
Translated text
Key words
tight oil reservoir,seepage model,stress sensitive,volume fracturing horizontal well,interfracture interference
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined