OCC: An Automated End-to-End Machine Learning Optimizing Compiler for Computing-In-Memory

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems(2022)

引用 17|浏览33
暂无评分
摘要
Memristive devices promise an alternative approach toward non-Von Neumann architectures, where specific computational tasks are performed within the memory devices. In the machine learning (ML) domain, crossbar arrays of resistive devices have shown great promise for ML inference, as they allow for hardware acceleration of matrix multiplications. But, to enable widespread adoption of these novel architectures, it is critical to have an automatic compilation flow as opposed to relying on a manual mapping of specific kernels on the crossbar arrays. We demonstrate the programmability of memristor-based accelerators using the new compiler design principle of multilevel rewriting, where a hierarchy of abstractions lowers programs level-by-level and perform code transformations at the most suitable abstraction. In particular, we develop a prototype compiler, which progressively lowers a mathematical notation for tensor operations arising in ML workloads, to fixed-function memristor-based hardware blocks.
更多
查看译文
关键词
Computing-in-memory (CIM),machine learning (ML),memristor,MLIR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要