Quantitative determination of the intracellular uptake of silica nanoparticles using asymmetric flow field flow fractionation coupled with ICP mass spectrometry and their cytotoxicity in HepG2 cells

Archives of Toxicology(2024)

Cited 0|Views1
No score
Abstract
We established a size separation method for silica nanoparticles (SiNPs) measuring 10, 30, 50, 70, and 100 nm in diameter using asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry (AF4-ICP-MS), and evaluated the cytotoxicity of SiNPs in human hepatoma HepG2 cells. Analysis of the mixture sample revealed that nanoparticles of different sizes were eluted at approximately 2-min intervals, with no effect on each elution time or percentage recovery. Compared with larger SiNPs, smaller SiNPs exhibited high cytotoxicity when the volume of SiNPs exposed to the cells was the same. We measured SiNPs in culture medium and inside cells by AF4-ICP-MS and found that approximately 17% of SiNPs in the mixture of five differently sized particles were absorbed by the cells. Transmission electron microscopy revealed that 10 nm SiNPs formed aggregates and accumulated in the cells. Based on AF4-ICP-MS analysis, there is no clear difference in the particle volume absorbed by the cells among different sizes. Therefore, the high toxicity of small SiNPs can be explained by the fact that their large surface area relative to particle volume efficiently induces toxicological influences. Indeed, the large surface area of 10 nm SiNPs significantly contributed to the production of reactive oxygen species.
More
Translated text
Key words
Nanomaterial,Silica,Asymmetric flow field flow fractionation,Inductively coupled plasma mass spectrometry,Transmission electron microscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined