Generation of Free Carriers in MoSe2 Monolayers Via Energy Transfer from CsPbBr3 Nanocrystals

ADVANCED OPTICAL MATERIALS(2022)

引用 8|浏览8
暂无评分
摘要
Transition metal dichalcogenide (TMDCs) monolayers make an excellent component in optoelectronic devices such as photodetectors and phototransistors. Selenide-based TMDCs, specifically molybdenum diselenide (MoSe2) monolayers with low defect densities, show much faster photoresponses compared to their sulfide counterpart. However, the typically low absorption of the atomically thin MoSe2 monolayer and high exciton binding energy limit the photogeneration of charge carriers. Yet, integration of light-harvesting materials with TMDCs can produce increased photocurrents via energy transfer. In this article, it is demonstrated that the interaction of cesium lead bromide (CsPbBr3) nanocrystals with MoSe2 monolayers results into an energy transfer efficiency of over 86%, as ascertained from the quenching and decay dynamics of the CsPbBr3 nanocrystals emission. Notably, the increase in the MoSe2 monolayer emission in the heterostructure accounts only for 33% of the transferred energy. It is found that part of the excess energy generates directly free carriers in the MoSe2 monolayer, as a result of the transfer of energy into the exciton continuum. The efficiency of the heterostructure via enhanced photocurrents with respect to the single material unit is proven. These results demonstrate a viable route to overcome the high exciton binding energy typical for TMDCs, as such having an impact on optoelectronic processes that rely on efficient exciton dissociation.
更多
查看译文
关键词
energy transfer, excitons, free carrier generation, perovskite nanocrystals, transition metal dichalcogenides, trions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要