Optimal Energy Management of Hydrogen Energy Facility Using Integrated Battery Energy Storage and Solar Photovoltaic Systems

IEEE Transactions on Sustainable Energy(2022)

Cited 57|Views6
No score
Abstract
The production of renewable hydrogen using water electrolysis has emerged with the increasing penetration of renewable energy sources. The energy management system (EMS) plays a key role in the production of renewable hydrogen by controlling electrolyzer’s operating point to achieve operational and economical benefits. In this regard, this article introduces the optimal scheduling for an EMS model for a hydrogen production system integrated with a photovoltaic (PV) system and a battery energy storage system (BESS) to satisfy electricity and hydrogen demands of an industrial hydrogen facility. The proposed EMS model aims to minimize the cost of hydrogen (CoH) production by minimizing the system net costs of industrial hydrogen facility while maintaining a reliable system operation. Furthermore, the proposed EMS model enables the application of seasonal hydrogen storage by incorporating the Z-score statistical measure of historical electricity prices, which follows seasonal electricity price trends. This allows the storage of hydrogen during periods of relatively low electricity prices. To demonstrate the validity of this model, it is tested for both intraseasonal and seasonal storage. Four case studies are used to prove the techno-economic benefits of the proposed EMS model. Furthermore, the impact of the electrolyzer’s capacity factor, the size of the hydrogen storage, and the PV share is investigated in terms of their techno-economic benefits to the system.
More
Translated text
Key words
Energy management system,electrolyzer,hydrogen cost,renewable energy,seasonal energy storage systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined