Carbon coated electric arc furnace dust prepared by one-pot pyrolysis: An efficient, low carbon footprint electrode material for lithium-ion batteries

Materials Chemistry and Physics(2022)

Cited 5|Views1
No score
Abstract
This work offers useful insights into the evaluation of the electric arc furnace dust in green energy applications by surface engineering. To produce low-carbon-footprint electrodes, for the first time in the open literature, the practical pyrolysis (of sucrose) method is applied to create a nanometer-thick carbon layer over the dust. Advanced techniques are used to characterize the carbon-coated electric arc furnace flue dust morphologically, structurally, and chemically. Galvanostatic tests reveal that the carbon-coated dust exhibits 600 mAh g−1 discharge capacity after 250 cycles. The rate test proves that the carbon-coated dust can withstand a high current load (2A g−1) and delivers 540 mAh g−1 after 250 cycles when the current load is decreased to 0.1A g−1. This obtained capacity shows that with the correct material selection and process design, it is possible to produce low-carbon footprint electrodes at a low cost. Electrochemical characterizations indicate that the lithiation reaction of the carbon-coated dust takes place similarly to that of the anode materials which are made of synthetically fabricated carbon-coated transition metal oxides and/or ferrites. It is anticipated that this study sets an example for the valorization of the various industrial wastes in energy applications in the future.
More
Translated text
Key words
Lithium-ion batteries,Carbon coating,Green electrode materials,Nanomaterials
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined