A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences

COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL(2022)

引用 1|浏览11
暂无评分
摘要
RNA-protein interactions play vital roles in driving the cellular machineries. Despite significant involvement in several biological processes, the underlying molecular mechanism of RNA-protein interactions is still elusive. This may be due to the experimental difficulties in solving co-crystallized RNA-protein complexes. Inherent flexibility of RNA molecules to adopt different conformations makes them functionally diverse. Their interactions with protein have implications in RNA disease biology. Thus, study of binding interfaces can provide a mechanistic insight of the molecular functioning and aberrations caused due to altered interactions. Moreover, high-throughput sequencing technologies have generated huge sequence data compared to available structural data of RNA-protein complexes. In such a scenario, efficient computational algorithms are required for identification of protein-binding interfaces of RNA in the absence of known structures. We have investigated several machine learning classifiers and various features derived from nucleotide sequences to identify protein-binding nucleotides in RNA. We achieve best performance with nucleotide-triplet and nucleotide-quartet feature-based random forest models. An overall accuracy of 84.8%, sensitivity of 83.2%, specificity of 86.1%, MCC of 0.70 and AUC of 0.93 is achieved. We have further implemented the developed models in a user-friendly webserver "Nucpred", which is freely accessible at "http://www.csb.iitkgp.ac.in/applications/Nucpred/index". (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
RNA-protein interactions, Protein-binding nucleotides, Machine learning, Stratified cross validation, Random forest classifier
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要