Reversible Charge-Polarity Control for Multioperation-Mode Transistors Based on van der Waals Heterostructures

ADVANCED SCIENCE(2022)

引用 5|浏览17
暂无评分
摘要
Van der Waals (vdW) heterostructures-in which layered materials are purposely selected to assemble with each other-allow unusual properties and different phenomena to be combined and multifunctional electronics to be created, opening a new chapter for the spread of internet-of-things applications. Here, an O-2-ultrasensitive MoTe2 material and an O-2-insensitive SnS2 material are integrated to form a vdW heterostructure, allowing the realization of charge-polarity control for multioperation-mode transistors through a simple and effective rapid thermal annealing strategy under dry-air and vacuum conditions. The charge-polarity control (i.e., doping and de-doping processes), which arises owing to the interaction between O-2 adsorption/desorption and tellurium defects at the MoTe2 surface, means that the MoTe2/SnS2 heterostructure transistors can reversibly change between unipolar, ambipolar, and anti-ambipolar transfer characteristics. Based on the dynamic control of the charge-polarity properties, an inverter, output polarity controllable amplifier, p-n diode, and ternary-state logics (NMIN and NMAX gates) are demonstrated, which inspire the development of reversibly multifunctional devices and indicates the potential of 2D materials.
更多
查看译文
关键词
charge-polarity control, MoTe2, multioperation-mode transistors, SnS2, van der Waals heterostructures
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要