Significant enhancement of scintillation performance by inducing oxygen vacancies in alkali metal ion (A(+) = Li+, Na+, K+)-incorporated (Lu, Sc)BO3:Ce

DALTON TRANSACTIONS(2022)

引用 1|浏览11
暂无评分
摘要
The incorporation of Sc3+ can stabilize calcite-phase LuBO3:Ce3+ to grow large-sized single crystals but leads to the significant degradation of scintillation performance. In the present work, alkali metal ion (A(+) = Li+, Na+, K+)-incorporated (Lu, A, Sc)BO3:Ce was rapidly synthesized in batches via a high-throughput sol-gel method. The aliovalent substitution of Lu3+ with A(+) is balanced by the generation of oxygen vacancies by forming [A(Lu)(center dot center dot) + V-o(xx)] complexes. Thanks to the increased oxygen vacancies, the luminescence and XEL intensity of (Lu, Li, Sc)BO3:Ce are significantly enhanced by 2.2 times and 1.9 times, respectively. Further, the incorporation of A(+) is attributed to the improved transition efficiency of charge carriers. The prepared scintillation screen fabricated with LASBO:Ce and PMMA shows that the spatial resolution can reach 8.6 lp mm(-1), indicating its potential application in efficient and low-cost non-destructive X-ray detection. This work is of great significance in improving the luminescence and scintillation performance of (Lu, Sc)BO3:Ce single crystals and thin films and their application in the scintillation field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要