Spectroscopic imaging ellipsometry of two-dimensional TMDC heterostructures

APPLIED PHYSICS LETTERS(2022)

Cited 3|Views12
No score
Abstract
Semiconducting two-dimensional materials and their heterostructures gained a lot of interest for applications as well as fundamental studies due to their rich optical properties. Assembly in van der Waals heterostacks can significantly alter the intrinsic optical properties as well as the wavelength-dependent absorption and emission efficiencies, making a direct comparison of, e.g., photoluminescence intensities difficult. Here, we determine the dielectric function for the prototypical MoSe2/WSe2 heterobilayer and their individual layers. Apart from a redshift of 18-44 meV of the energetically lowest interband transitions, we find that for larger energies, the dielectric function can only be described by treating the van der Waals heterobilayer as a new artificial homobilayer crystal rather than a stack of individual layers. The determined dielectric functions are applied to calculate the Michelson contrast of the individual layers and the bilayer in dependence of the oxide thickness of often used Si/SiO2 substrates. Our results highlight the need to consider the altered dielectric functions impacting the Michelson interference in the interpretation of intensities in optical measurements such as Raman scattering or photoluminescence. Published under an exclusive license by AIP Publishing.
More
Translated text
Key words
spectroscopic imaging ellipsometry,two-dimensional
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined