Regulatory effect of polyamines and indole on expression of stress adaptation genes in Escherichia coli

E. A. Khaova, N. M. Kashevarova,A. G. Tkachenko

Acta Biomedica Scientifica(2022)

引用 0|浏览4
暂无评分
摘要
Background. Indole and polyamines are involved in the regulation of physiological processes in bacteria associated with adaptation to stress, biofilm formation, antibiotic tolerance, and bacterial persistence. However, the molecular targets and mechanisms of action of these metabolites are still poorly understood. In this work, we studied the effect of polyamines and indole on the expression of such genes as: rpoS, relA, and spoT, encoding regulators of the general stress responses and starvation; hns and stpA, encoding global regulators of gene expression; rmf, yqjD, hpf, raiA, rsfS, sra, ettA, encoding ribosome hibernation factors.The aim. To study the regulatory effects of polyamines and indole on the expression of these genes, which are responsible for the adaptation of Escherichia coli to stress.Materials and methods. We used strains of E. coli in this study. The amount of polyamines was studied by thin layer chromatography. The indole concentration was determined by high performance liquid chromatography. Gene expression was studied using real-time RT-PCR.Results. The addition of polyamines putrescine, cadaverine and spermidine to the medium stimulated the expression of all the studied genes. The maximal stimulation was observed at the stationary phase mostly. Putrescine and spermidine had the most significant effect. At 24 h of cultivation, an equimolar conversion of exogenous tryptophan into indole was showed. At this time, the expression of two genes – rmf and raiA – increased.Conclusions. We have shown that polyamines upregulate the expression of all the studied genes at the transcriptional level. The stimulating effect is specific for the phase of the batch culture and the type of polyamine. Indole has a positive effect on the expression of the rmf and raiA genes.
更多
查看译文
关键词
stress adaptation genes,escherichia coli,polyamines,indole
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要