Fabrication of Nano Iron Oxide-Modified Biochar from Co-Hydrothermal Carbonization of Microalgae and Fe(II) Salt for Efficient Removal of Rhodamine B

NANOMATERIALS(2022)

引用 14|浏览2
暂无评分
摘要
Dye adsorption by magnetic modified biochar has now received growing interest due to its excellent adsorption performance and facile separation for recycling. In this study, nano iron oxide-modified biochar was fabricated via the successive hydrothermal-pyrolyzing method using Chlorella vulgaris (Cv) and FeSO4 center dot 7H(2)O as raw materials, and its adsorption on Rhodamine B (RhB) in aqueous solution was studied. Multiple techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS) were employed to comprehensively characterize the structure, morphology and physicochemical properties of the adsorbent. The as-synthesized nano iron oxide-modified biochar (CBC-Fe(II)) exhibited a large surface area (527.6 m(2)/g) and high magnetic saturation value (13.7 emu/g) to facilitate magnetic separation. Compared with CBC and CBC-Fe(III), CBC-Fe(II) exhibited superior adsorption ability towards RhB in aqueous solution, with a maximum adsorption capacity of 286.4 mg/g. The adsorption process of RhB onto CBC-Fe(II) was well described by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating monolayer chemisorption behaviors for the adsorption system. Facile preparation, great adsorption performance and magnetic recovery properties endow CBC-Fe(II) to be a promising adsorbent for dye removal.
更多
查看译文
关键词
nano iron oxide, biochar, magnetic, Rhodamine B, adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要