Involvement of DNA Damage Response via the Ccndbp1-Atm-Chk2 Pathway in Mice with Dextran-Sodium-Sulfate-Induced Colitis

JOURNAL OF CLINICAL MEDICINE(2022)

Cited 1|Views12
No score
Abstract
The dextran sodium sulfate (DSS)-induced colitis mouse model has been widely utilized for human colitis research. While its mechanism involves a response to double-strand deoxyribonucleic acid (DNA) damage, ataxia telangiectasia mutated (Atm)-checkpoint kinase 2 (Chk2) pathway activation related to such response remains unreported. Recently, we reported that cyclin D1-binding protein 1 (Ccndbp1) activates the pathway reflecting DNA damage in its knockout mice. Thus, this study aimed to examine the contribution of Ccndbp1 and the Atm-Chk2 pathway in DSS-induced colitis. We assessed the effect of DSS-induced colitis on colon length, disease activity index, and histological score and on the Atm-Chk2 pathway and the subsequent apoptosis in Ccndbp1-knockout mice. DSS-induced colitis showed distal colon-dominant Atm and Chk2 phosphorylation, increase in TdT-mediated dUTP-biotin nick end labeling and cleaved caspase 3-positive cells, and histological score increase, causing disease activity index elevation and colon length shortening. These changes were significantly ameliorated in Ccndbp1-knockout mice. In conclusion, Ccndbp1 contributed to Atm-Chk2 pathway activation in the DSS-induced colitis mouse model, causing inflammation and apoptosis of mucosal cells in the colon.
More
Translated text
Key words
DSS, colitis, Ccndbp1, Atm, Chk2, DNA damage
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined