Potassium accumulation characteristics and expression of related genes involved in potassium metabolism in a high-potassium variety: tobacco (Nicotiana tabacum) as a model.

FUNCTIONAL PLANT BIOLOGY(2022)

Cited 0|Views8
No score
Abstract
We investigated potassium (K) accumulation characteristics and expression of K metabolism related genes in one high-K variety (ND202) and a common variety (NC89) of tobacco (Nicotiana tabacum L.). Results showed that K accumulation and leaf K content in ND202 were higher than those in NC89. The distribution rate and K accumulation in the leaves of ND202 increased significantly, while the distribution rate in the roots and stems had lower values. In addition, the maximum K accumulation rate and high-speed K accumulation duration in ND202 were found to be better than those in NC89. The expression of NKT1 in the upper and middle leaves of ND202 had an advantage, and the relative expression of NtKC1 and NtTPK1 in both the upper and middle leaves, as well as the roots, was also significantly upregulated. Conversely, the expression of NTRK1 in the lower leaves and roots of ND202 was weaker. ND202 had significantly greater expression levels of NtHAK1 than NC89 in the upper and middle leaves and roots; moreover, the expression of NtKT12 in the upper leaves and roots of ND202 was also higher. In comparison with common varieties, high-K varieties had a stronger ability to absorb and accumulate K. They also possessed higher expression of K+ channel- and transporter-related genes and showed a superior K accumulation rate and longer duration of high-speed K accumulation. Furthermore, K accumulation rate at 40-60days can be suggested as an important reference for the selection of high-K tobacco varieties.
More
Translated text
Key words
accumulation, characteristic, gene expression, high-K variety, potassium, potassium metabolism, tobacco, utilisation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined