An Approach to Improve the Indoor Positioning Performance of Pseudolite/UWB System with Ambiguity Resolution

Journal of Sensors(2022)

Cited 2|Views6
No score
Abstract
Indoor localization is still an open challenge, and some pseudolites have been developed to achieve seamless positioning service based on some commercialized GNSS chips. However, most of these indoor localization technologies often fail in a reasonable solution to the key problems such as low cost and highly accurate and efficient for users. In this paper, we propose an indoor location method based on integrated pseudolite and UWB; the virtual pseudo-range measurements of UWB are used to replace the pseudo-range measurements of pseudolite to solve the indoor multipath problem, which is tightly coupled with the corrected carrier phase measurements of pseudolite. Then, the channel-difference observation equation and UWB-aided ambiguity resolution are proposed for precise positioning. In order to test the proposed method, several experiments are conducted. The results show that the virtual pseudo-range errors from UWB are smaller than that of GNSS, and such a small bias will be better for the fast fixing of ambiguity. In addition, the positioning accuracy of the proposed indoor location method is improved from cm-level for the float solution to mm-level for the fixed solution; these performances would be more convincing to users than that given in the most pseudolite and UWB.
More
Translated text
Key words
indoor positioning performance,indoor positioning,pseudolite/uwb system
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined