Primary thermalisation mechanism of Early Universe observed from Faraday-wave scattering on liquid-liquid interfaces

arxiv(2022)

引用 0|浏览6
暂无评分
摘要
For the past two hundred years, parametric instabilities have been studied in various physical systems, such as fluids, mechanical devices and even inflationary cosmology. It was not until a few decades ago that this subharmonic unstable response arose as a central mechanism for the thermalisation of the Early Universe, in a theory known as preheating. Here we study a parametrically driven two-fluid interface to simulate the key aspects of inflationary preheating dynamics through the onset of nonlinear Faraday waves. We present a detailed analysis of the effective field theory description for interfacial waves through the factorization properties of higher-order correlations. Despite the intricacies of a damped and highly interacting hydrodynamical system, we show that the scattering of large amplitude Faraday waves is connected to a broadening of primary resonance bands and the subsequent appearance of secondary instabilities as predicted in preheating dynamics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要