Hypoperfusion in nucleus accumbens in chronic migraine using 3D pseudo-continuous arterial spin labeling imaging MRI

The Journal of Headache and Pain(2022)

引用 4|浏览6
暂无评分
摘要
Background Nucleus accumbens (NAcc) played an important role in pain mediation, and presents changes of neuronal plasticity and functional connectivity. However, less is known about altered perfusion of NAcc in chronic migraine (CM). The aim of this study is to investigate the altered perfusion of the NAcc in CM using a MR three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) imaging. Methods Thirteen CM patients and 15 normal controls (NC) were enrolled and underwent 3D PCASL and brain structural imaging. The cerebral blood flow (CBF) images were co-registered with the brain structural images, and the volume and CBF value of NAcc were extracted from the raw brain structural images and co-registered CBF images using an individual NAcc mask, which was obtained from the AAL3 template under transformation by the inverse deformation field generated from the segmentation of the brain structural images. The independent sample t test and receiver operating characteristic (ROC) curve was used to investigate the altered volume and perfusion of the NAcc in CM patients. Results There was no significant difference for the volume of bilateral NAccs between CM and NC ( p > 0.05). CM presented a lower CBF value (49.34 ± 6.09 ml/100 mg/min) compared with that of NC (55.83 ± 6.55 ml/100 mg/min) in left NAcc ( p = 0.01), while right NAcc showed no significant difference between CM and NC ( p = 0.11). ROC analysis identified that the area under the curve was 0.73 (95CI% 0.53–0.88) with cut-off value 48.63 ml/100 mg/min with sensitivity 50.00% and specificity 93.33%. The correlation analysis found a negative correlation between the CBF value of the left NAcc and VAS score (r = -0.61, p = 0.04). Conclusion Hypoperfusion of the left NAcc was observed in CM, which could be considered as a potential diagnostic imaging biomarker in CM.
更多
查看译文
关键词
Arterial spin labelling, Brain, Chronic migraine, Magnetic resonance imaging, Nucleus accumbens, Perfusion imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要