Chemometric origin classification of Chinese garlic using sulfur-containing compounds, assisted by stable isotopes and bioelements.

Food chemistry(2022)

Cited 12|Views16
No score
Abstract
Geographical origin discrimination of agro-products is essential to guarantee food safety and fair trade. Garlic samples cultivated in six provinces or major production regions in China were characterized for stable isotopes (δ13C, δ2H, δ18O, δ15N, and δ34S), bioelemental contents (% C, % N and % S), and sulfur-containing compounds (8 organosulfur components and 2 amino acids). Results showed that many of the 18 analyzed garlic variables had significant differences among production regions. Some sulfur-containing compounds found in garlic from different provinces had a strong correlation with sulfur isotopes, suggesting garlic sulfur isotopes were also affected by geographical origin. Two supervised pattern recognition models (PLS-DA and k-NN) were developed using stable isotopes, elemental contents, and sulfur-containing compounds, and had a discrimination accuracy of 93.4 % and 87.8 %, respectively. Chemometric classification models using multi-isotopes, elements and sulfur-containing compounds provides a useful method to authenticate Chinese garlic origins.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined