Experimental analysis on the influence of compression ratio, flow rate, injection pressure, and injection timing on the acetylene — diesel aspirated dual fuel engine

Environmental science and pollution research international(2022)

引用 1|浏览0
暂无评分
摘要
The predicted scarcity, increasing cost of petroleum fuels, and environmental degradation are encouraging researchers to search for alternative fuels throughout the world. Hence, it is intended to utilize acetylene-based DF in the compression ignition (CI) engine with minor modifications. An engine of 5 Hp, four stroke, single-cylinder, water-cooled operated in dual-fuel (DF) mode (acetylene gas-diesel), aiming to reduce the emissions, was deployed to investigate its characteristics. In DF mode, gaseous fuel is injected through intake air manifold with 2, 4, and 6 lpm constantly. According to the research findings, the gas rate of 6 lpm provides the best results, having a superior BTE of 30.7%. Various compression ratios (16:1, 18:1, and 20:1) were used to determine the optimal compression ratio (CR) under a volume flow rate of 6 lpm with diesel. Fuel injector pressure (200, 220, and 240 bar) with injector intervals (19°, 23°, and 27°bTDC) were changed consecutive sequence while adjusting CR, and the best outcomes for improved CI fuel efficiency were determined. From the investigational analysis, the peak in-cylinder pressure and net HRR (heat release rate) are assessed for being better by the increment in CR in DF mode of operation with an acetylene gas of 6 lpm at all operating settings. At a 240 bar injection pressure, the BTE is recorded highest (35.1%), and smoke was decreased. An IT of 23obTDC, the CO and HC were found as to be minimum as 28 ppm and 0.04 ppm.
更多
查看译文
关键词
Acetylene gas,CI engine,Compression ratio,Dual fuel mode,Injection timing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要