Metagenomic analysis of the gut microbiota in piglets either challenged or not with enterotoxigenic Escherichia coli reveals beneficial effects of probiotics on microbiome composition, resistome, digestive function and oxidative stress responses.

PloS one(2022)

引用 6|浏览1
暂无评分
摘要
This study used metagenomic analysis to investigate the gut microbiota and resistome in piglets that were or were not challenged with enterotoxigenic Escherichia coli (ETEC) and had or had not received dietary supplementation with microencapsulated probiotics. The 72 piglets belonged to six groups that were either non-ETEC challenged (groups 1-3) or ETEC challenged (receiving 5ml of 109 CFU/ml pathogenic ETEC strain L3.2 one week following weaning at three weeks of age: groups 4-6). On five occasions at 2, 5, 8, 11, and 14 days of piglet age, groups 2 and 5 were supplemented with 109 CFU/ml of multi-strain probiotics (Lactiplantibacillus plantarum strains 22F and 25F, and Pediococcus acidilactici 72N) while group 4 received 109 CFU/ml of P. acidilactici 72N. Group 3 received 300mg/kg chlortetracycline in the weaner diet to mimic commercial conditions. Rectal faecal samples were obtained for metagenomic and resistome analysis at 2 days of age, and at 12 hours and 14 days after the timing of post-weaning challenge with ETEC. The piglets were all euthanized at 42 days of age. The piglets in groups 2 and 5 were enriched with several desirable microbial families, including Lactobacillaceae, Lachnospiraceae and Ruminococcaceae, while piglets in group 3 had increases in members of the Bacteroidaceae family and exhibited an increase in tetW and tetQ genes. Group 5 had less copper and multi-biocide resistance. Mobile genetic elements IncQ1 and IncX4 were the most prevalent replicons in antibiotic-fed piglets. Only groups 6 and 3 had the integrase gene (intl) class 2 and 3 detected, respectively. The insertion sequence (IS) 1380 was prevalent in group 3. IS3 and IS30, which are connected to dietary intake, were overrepresented in group 5. Furthermore, only group 5 showed genes associated with detoxification, with enrichment of genes associated with oxidative stress, glucose metabolism, and amino acid metabolism compared to the other groups. Overall, metagenomic analysis showed that employing a multi-strain probiotic could transform the gut microbiota, reduce the resistome, and boost genes associated with food metabolism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要