A Comparative Study of Canine Mesenchymal Stem Cells Isolated from Different Sources

ANIMALS(2022)

引用 5|浏览11
暂无评分
摘要
Simple Summary The present study describes differences in the isolation yield, morphology, presence of surface markers and proliferation capacity but not in the multilineage potential of canine MSCs isolated from bone marrow, adipose tissue and amnion. Among all the MSCs analysed, AT-MSCs showed the highest isolation yield, phenotype homogeneity, proliferation capacity and osteogenic and chondrogenic potential. In addition, for BM-MSCs and AM-MSCs, we uncovered some differences that need to be considered during isolation, expansion and phenotyping prior to their possible application in targeted regenerative veterinary medicine. In this study, we provide comprehensive analyses of mesenchymal stem cells (MSCs) isolated from three types of canine tissues: bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and amniotic tissue (AM-MSCs). We compare their morphology, phenotype, multilineage potential and proliferation activity. The BM-MSCs and AM-MSCs showed fibroblast-like shapes against the spindle shape of the AT-MSCs. All populations showed strong osteogenic and chondrogenic potential. However, we observed phenotypic differences. The BM-MSCs and AT-MSCs revealed high expression of CD29, CD44, CD90 and CD105 positivity compared to the AM-MSCs, which showed reduced expression of all the analysed CD markers. Similarly, the isolation yield and proliferation varied depending on the source. The highest isolation yield and proliferation were detected in the population of AT-MSCs, while the AM-MSCs showed a high yield of cells, but the lowest proliferation activity, in contrast to the BM-MSCs which had the lowest isolation yield. Thus, the present data provide assumptions for obtaining a homogeneous MSC derived from all three canine tissues for possible applications in veterinary regenerative medicine, while the origin of isolated MSCs must always be taken into account.
更多
查看译文
关键词
canine mesenchymal stem cells, morphology, phenotype, multilineage potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要