A meta-learning BCI for estimating decision confidence

JOURNAL OF NEURAL ENGINEERING(2022)

引用 3|浏览21
暂无评分
摘要
Objective. We investigated whether a recently introduced transfer-learning technique based on meta-learning could improve the performance of brain-computer interfaces (BCIs) for decision-confidence prediction with respect to more traditional machine learning methods. Approach. We adapted the meta-learning by biased regularisation algorithm to the problem of predicting decision confidence from electroencephalography (EEG) and electro-oculogram (EOG) data on a decision-by-decision basis in a difficult target discrimination task based on video feeds. The method exploits previous participants' data to produce a prediction algorithm that is then quickly tuned to new participants. We compared it with with the traditional single-subject training almost universally adopted in BCIs, a state-of-the-art transfer learning technique called domain adversarial neural networks, a transfer-learning adaptation of a zero-training method we used recently for a similar task, and with a simple baseline algorithm. Main results. The meta-learning approach was significantly better than other approaches in most conditions, and much better in situations where limited data from a new participant are available for training/tuning. Meta-learning by biased regularisation allowed our BCI to seamlessly integrate information from past participants with data from a specific user to produce high-performance predictors. Its robustness in the presence of small training sets is a real-plus in BCI applications, as new users need to train the BCI for a much shorter period. Significance. Due to the variability and noise of EEG/EOG data, BCIs need to be normally trained with data from a specific participant. This work shows that even better performance can be obtained using our version of meta-learning by biased regularisation.
更多
查看译文
关键词
brain-computer interfaces, EEG, meta learning, decision confidence prediction, decision making
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要