Chrome Extension
WeChat Mini Program
Use on ChatGLM

Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery

MARINE DRUGS(2022)

Cited 11|Views5
No score
Abstract
Large-scale genome-mining analyses have identified an enormous number of cryptic biosynthetic gene clusters (BGCs) as a great source of novel bioactive natural products. Given the sheer number of natural product (NP) candidates, effective strategies and computational methods are keys to choosing appropriate BGCs for further NP characterization and production. This review discusses genomics-based approaches for prioritizing candidate BGCs extracted from large-scale genomic data, by highlighting studies that have successfully produced compounds with high chemical novelty, novel biosynthesis pathway, and potent bioactivities. We group these studies based on their BGC-prioritization logics: detecting presence of resistance genes, use of phylogenomics analysis as a guide, and targeting for specific chemical structures. We also briefly comment on the different bioinformatics tools used in the field and examine practical considerations when employing a large-scale genome mining study.
More
Translated text
Key words
genome mining,secondary metabolites,natural products,bioactive compounds,antibiotics,genomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined