谷歌浏览器插件
订阅小程序
在清言上使用

The Physiological Responses of Zea Mays L. and Cucumis Sativus L. on Drought Stress and Re-Watering

Jurnal Biodjati(2021)

引用 0|浏览1
暂无评分
摘要
Drought leads to deficit water availability and its detrimental effects seriously threaten plant growth. This study assessed the physiological, biochemical, and antioxidant adjustments in different types of photosynthetic plants between Zea mays L. (C4) and Cucumis sativus L. (C3 plant) under response to short-term drought stress. Analyses of relative water content (RWC), proline, and ascorbic acid (AsA) were performed to explore how these plants react to drought. Fifteen-day-old plants were subjected to full irrigation or gradual drought periods for 2-d, 4-d, 6-d, and 8-d following by recovery for 7-d. The results revealed that drought significantly reduces leaf RCW in both plants. Re-watered Z. mays after 8-d drought was higher than C. sativus and reestablished RCW by 23% of stressed plant although remained lower by 9% of the well-watered plant. While, proline and AsA contents in Z. mays were higher than those in C. sativus in drought treatment at 8-d (2.05 µmol/g FW) and 6-d (3174.60 AsA/100 g FW), respectively, that could demonstrate osmotic adjustment ability in this C4 species. The increased proline in both plants also indicates a good strategy for plants to recover. Rewatering gave a decrease AsA and could be expected that plants restore cellular activity after oxidative injury. Based on our study, proline is the most informative biochemical marker to differentiate plant response to drought and Z. mays adjusted defense mechanism to drought rather than C. sativus due to higher accumulation of proline, better antioxidant activity, and improved RCW after recovery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要