Solar Cells with Laser Doped Boron Layers from Atmospheric Pressure Chemical Vapor Deposition

Solar(2022)

引用 2|浏览8
暂无评分
摘要
We present laser-doped interdigitated back contact (IBC) solar cells with efficiencies of 23% on an area of 244 cm2 metallized by a screen-printed silver paste. Local laser doping is especially suited for processing IBC cells where a multitude of pn-junctions and base contacts lay side by side. The one-sided deposition of boron-doped precursor layers by atmospheric pressure chemical vapor deposition (APCVD) is a cost-effective method for the production of IBC cells without masking processes. The properties of the laser-doped silicon strongly depend on the precursor’s purity, thickness, and the total amount of boron dopants. Variations of the precursor in terms of thickness and boron content, and of the laser pulse energy density, can help to tailor the doping and sheet resistance. With saturation-current densities of 70 fA/cm2 at sheet resistances of 60 Ohm/sq, we reached maximum efficiencies of 23% with a relatively simple, industrial process for bifacial IBC-cells, with 70% bifaciality measured on the module level. The APCVD-layers were deposited with an inline lab-type system and a metal transport belt and, therefore, may have been slightly contaminated, limiting the efficiencies when compared to thermal-diffused boron doping. The use of an industrial APCVD system with a quartz glass transport system would achieve even higher efficiencies.
更多
查看译文
关键词
laser doped boron layers,chemical vapor deposition,solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要