Machine learning sparse tight-binding parameters for defects

NPJ COMPUTATIONAL MATERIALS(2022)

Cited 4|Views10
No score
Abstract
We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parameterization. Since Multi-layer perceptrons (i.e., feed-forward neural networks) perform best we adopt them for our further investigations. We demonstrate the accuracy of our parameterizations for a range of important electronic structure properties such as band structure, local density of states, transport and level spacing simulations for two common defects in single layer graphene. Our machine learning approach achieves results comparable to maximally localized Wannier functions (i.e., DFT accuracy) without prior knowledge about the electronic structure of the defects while also allowing for a reduced interaction range which substantially reduces calculation time. It is general and can be applied to a wide range of other materials, enabling accurate large-scale simulations of material properties in the presence of different defects.
More
Translated text
Key words
Electronic properties and devices,Electronic properties and materials,Electronic structure,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined