Theoretical and experimental study on Noise Equivalent Power of X-ray semiconductor ultra-fast response material based on the rad-optic effect

arxiv(2022)

引用 0|浏览15
暂无评分
摘要
Semiconductor material based on the rad-optic effect enables ultra-fast detection of X-rays and plays an important role in fusion diagnostics. Obtaining the accurate noise equivalent power (NEP) of the semiconductor ultrafast response material is the key to detecting X-rays. In this paper, the refractive index change mechanism of the semiconductor under X-ray irradiation was analyzed, and the quantitative relationship between the diffraction efficiency and the X-ray photon energy was established through the LT-AlGaAs diffraction imaging experiments. The impulse responses of LT-AlGaAs under 1 KeV-10 KeV X-ray radiation were calculated, revealing the variation of NEP density with radiated photon energy. In the case of bombarding the Al target to generate 1.5 KeV X-rays, the imaging experiments of LT-AlGaAs were performed. The diffraction image of LT-AlGaAs has a linear relationship with the radiation intensity, and the NEP density of LT-AlGaAs reaches 4.80*105W/cm2. This study has reference significance for the development of ultra-fast X-ray imaging systems based on the rad-optic effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要