Moiré band structures of the double twisted few-layer graphene

Physical Review B(2022)

引用 0|浏览0
暂无评分
摘要
Very recently, unconventional superconductivity has been observed in the double twisted trilayer graphene (TLG), where three monolayer graphene (MLG) is stacked on top of each other with two twist angles [J. M. Park et al., Nature (London) 590, 249 (2021); Z. Hao et al., Science 371, 1133 (2021); X. Zhang et al., Phys. Rev. Lett. 127, 166802 (2021)]. When some of the MLGs in the double twisted TLG are replaced by bilayer graphene (BLG), we get a family of double twisted moir\'e heterostructure, namely, double twisted few layer graphene (DTFLG). In this paper, we theoretically investigate the moir\'e band structures of the DTFLGs with diverse arrangements of MLG and BLG. We find that, depending on the relative rotation direction of the two twist angles (alternate or chiral twist) and the middle van der Waals (vdW) layer (MLG or BLG), a general (X + Y + Z)-DTFLG can be classified into four categories, i.e., (X + 1 + Z)-ATFLG, (X + 2 + Z)-ATFLG, (X + 1 + Z)-CTFLG, and (X + 2 + Z)-CTFLG, each of which has its own unique band structure. Here, X, Y, Z denote the three vdW layers, i.e., MLG or BLG. Interestingly, the (X + 1 + Z)-ATFLGs have a pair of perfect flat bands at the magic angle about $1.{54}^{\ensuremath{\circ}}$ coexisting with a pair of linear or parabolic bands, which is quite like the double twisted TLG. Meanwhile, when the twist angle is smaller than a magic angle $1.{70}^{\ensuremath{\circ}}$, the (X + 2 + Z)-CTFLGs can have two isolated narrow bands at ${E}_{f}$ with bandwidth less than 5 meV. The influence of the electric field and the topological features of the moir\'e bands have been studied as well. Our paper indicates that the DTFLGs, especially (X + 1 + Z)-ATFLG and (X + 2 + Z)-CTFLG, are promising platforms to study the moir\'e flat band induced correlation and topological effects.
更多
查看译文
关键词
few-layer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要