Experimental Investigation of Heat Transfer Enhancement in Grooved Plates under Natural Convection

Abdul Razak Kaladgi, G. Ramachandran,Mohammed Aneeque, Fazlur Rahman,Mohammed Kareemulla,Mohammed Avvad, I M Navaneeth,Rayid Muneer, A. Chandrasekhar

International journal of advanced thermofluid research(2019)

Cited 0|Views0
No score
Abstract
Due to the extreme miniaturization of devices, enhancing the heat transfer rate has been a challenging task in the electronic industry. Several researchers have conducted experiments to gain maximum heat transfer rate in small spaces. So, the current study focuses mainly on improving the thermal dissipation characteristics from the surface by creating grooves across the substrate of aluminium plates with different ranges of length to depth (L/D) ratio and width to depth (W/D) ratios. The experiment was conducted by varying the heat flux under steady state with free convection conditions. It was seen from the experiments that the L/D ratio and W/D ratio have significant effect on heat transfer rate and friction factor. The Response Surface Methodology gave a good prediction of the interaction factors. A large value of R2adj (0.9981) was projected. This result suggests that the designated model can signify 99.81 per cent of the total variation on Nusselt number data. The "Lack of Fit F-value" of 0.74 indicates that the lack of fit compared to the pure error is not significant. It could be concluded that heat transfer enhancement does occur with the creation of grooves on surfaces but at the cost of pumping power.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined