On the role of E‐F region coupling in the generation of nighttime MSTIDs during summer and equinox: Case studies over northern Germany

Journal Of Geophysical Research: Space Physics(2022)

引用 1|浏览34
暂无评分
摘要
Simultaneous observations from a 630 nm all-sky airglow imager, GNSS-TEC receivers, and an ionosonde are used to investigate the role of E- and F-region coupling on the generation of medium-scale traveling ionospheric disturbances (MSTIDs). The primary observations are OI 630 nm airglow images taken by an all-sky imager in Kuhlungsborn (54.07 degrees N; 11.46 degrees E, 53.79 degrees N Mlat.), a site in northern Germany. Out of 226 nights of observations, MSTIDs were found only in 18 nights, demonstrating the low occurrence rate over Kuhlungsborn. We focused on four MSTIDs events: two during the vernal equinox and two during summer. Coincident measurements of detrended GNSS-TEC supported the presence of MSTIDs during the selected events, and simultaneous observations from the ionosonde in Juliusruh (54.60 degrees N, 13.4 degrees E, 54.02 degrees N Mlat.) showed sporadic-E (Es) layer and spread-F activity in the E- and F-region, respectively. We observed the onset of the observed MSTIDs to be around the 15 degrees-20 degrees E longitude and 60-45 degrees N latitude belts. Additionally, we found that in each case, the onset of MSTIDs coincides with the presence of an Es layer with sporadic-E trace is observed (foEs) exceeding 4 MHz. This suggests that an Es layer with foEs >= 4MHz was a source of the generation of these MSTIDs. Altitude of the Es layer could be another important factor in generating MSTIDs. The Es layer should exist at an altitude where Hall conductivity is large, as happened in the present study.
更多
查看译文
关键词
MSTIDs, sporadic-E layer, coupling, airglow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要