Polarimetric Size Sorting Signatures in the Convective Regions of Mesoscale Convective Systems in PECAN: Implications on Kinematics, Thermodynamics, and Precipitation Pathways

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2022)

引用 0|浏览2
暂无评分
摘要
An object-based technique was utilized to identify hydrometeor size-sorting signatures at lower levels in the convective regions of 10 mesoscale convective systems (MCSs) during the 2015 Plains Elevated Convection at Night (PECAN) field campaign. Composite statistical analysis indicates that the magnitudes of size-sorting signatures (the separation distances between rain diameter maxima and concentration maxima) are nonlinearly correlated to the echo-top height, rain mass beneath the melting level, and precipitation rates at higher percentiles. To explore this correlation, the weather forecasting and research model was used to simulate the 20 June 2015 MCS during PECAN. Statistical analysis of the model outputs indicates more active riming growth and quicker graupel fallout at warmer temperatures near areas with larger separation distances. While updraft intensity above the melting level was also positively correlated to separation distances, this correlation was only statistically significant within certain temperature ranges. Additional analyses reveal that the higher intense precipitation potential near signatures with large separation distances could be attributed to precipitation production from the melted graupel. Finally, spatial correspondence between graupel distribution at the melting level and rain distribution at the lowest model level illustrates the critical role of graupel sedimentation and sorting in creating size-sorting signatures in MCSs during the PECAN field experiment.
更多
查看译文
关键词
polarmetric radar,hydrometer size sorting,microphysics,mesoscale convective system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要