Comparative study on the inhibiting mechanism of inhibitor with primary amine groups and quaternary ammonium groups for sodium bentonite

PETROLEUM(2023)

引用 1|浏览14
暂无评分
摘要
Shale hydration and swelling is the main obstacle to the development of shale gas utilizing water-based drilling fluids (WBDFs). In this work, the inhibition mechanism of alkylammonium inhibitor and alkylamine inhibitor adsorbed on sodium bentonite (Na+Bent) are investigated using infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), zeta potential, particle size distribution tests, and thermogravimetry analysis (TGA). The results suggest that HTB and HMD can be inserted into the interlamination of Na+Bent and minimize the basal spacing compared to hydrated Na+Bent. HTB and HMD are inserted between the Na+Bent layers in a single-layer tiled manner and replace the sodium ions that are firmly fixed between the layers. Eventually, water molecules are removed from the interlayer Na+Bent. The interaction between the quaternary ammonium group and Na+Bent is more significant than between the primary amine group and Na+Bent. The inhibition performance suggests that HTB inhibits Na+Bent hydration and swelling more substantially than other inhibitors, indicating that the inhibition performance of the two quaternary ammonium groups is greater than that of the two primary amine groups. Therefore, HTB can be used as intercalation inhibition in WBDFs and has tremendous application value. 0 2022 Southwest Petroleum University. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Sodium bentonite,Alkylammonium,Alkylamine,Inhibition performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要