Investigating the Single Trial Detectability of Cognitive Face Processing by a Passive Brain-Computer Interface.

Frontiers in neuroergonomics(2022)

引用 1|浏览0
暂无评分
摘要
An automated recognition of faces enables machines to visually identify a person and to gain access to non-verbal communication, including mimicry. Different approaches in lab settings or controlled realistic environments provided evidence that automated face detection and recognition can work in principle, although applications in complex real-world scenarios pose a different kind of problem that could not be solved yet. Specifically, in autonomous driving-it would be beneficial if the car could identify non-verbal communication of pedestrians or other drivers, as it is a common way of communication in daily traffic. Automated identification from observation whether pedestrians or other drivers communicate through subtle cues in mimicry is an unsolved problem so far, as intent and other cognitive factors are hard to derive from observation. In contrast, communicating persons usually have clear understanding whether they communicate or not, and such information is represented in their mindsets. This work investigates whether the mental processing of faces can be identified through means of a Passive Brain-Computer Interface (pBCI). This then could be used to support the cars' autonomous interpretation of facial mimicry of pedestrians to identify non-verbal communication. Furthermore, the attentive driver can be utilized as a sensor to improve the context awareness of the car in partly automated driving. This work presents a laboratory study in which a pBCI is calibrated to detect responses of the fusiform gyrus in the electroencephalogram (EEG), reflecting face recognition. Participants were shown pictures from three different categories: faces, abstracts, and houses evoking different responses used to calibrate the pBCI. The resulting classifier could distinguish responses to faces from that evoked by other stimuli with accuracy above 70%, in a single trial. Further analysis of the classification approach and the underlying data identified activation patterns in the EEG that corresponds to face recognition in the fusiform gyrus. The resulting pBCI approach is promising as it shows better-than-random accuracy and is based on relevant and intended brain responses. Future research has to investigate whether it can be transferred from the laboratory to the real world and how it can be implemented into artificial intelligences, as used in autonomous driving.
更多
查看译文
关键词
face recognition,passive brain–computer interface (pBCI),single-trial classification,automated driving,human-computer interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要