High Energy Storage Performance in Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 ‐ZnO Hybrid Perovskite Solid Solution Thin Films

Advanced electronic materials(2022)

引用 3|浏览6
暂无评分
摘要
Relaxor property plays a key role in determining energy storage performance of dielectric capacitor. The usual method to improve relaxor property is to form substitutional solid solution. Here an unusually substitutional and interstitial hybrid perovskite solid solution 0.8(Ba 0.85 Ca 0.15 Zr 0.1 Ti 0.9 O 3 )‐0.2ZnO (BCZT:Zn) is designed, where one Zn 2+ occupies B‐site and two Zn 2+ share one A‐site of perovskite structure, and fabricated its epitaxial thin films. Compared to BCZT films, BCZT:Zn films have increased c / a ratio which leads to enhanced maximum polarization P max , wide band gap therefore high electrical breakdown strength E BDS , and enhanced relaxor degree thus suppressed remanent polarization P r . As the results, dramatically improve energy storage property with the recoverable energy storage density W rec of 75.9 J cm −3 and the energy storage efficiency η of 76.7% are obtained in BCZT:Zn films. This work not only provides a high performance relaxor ferroelectric material, but also impacts some new thinking to optimize die/ferro/piezoelectric properties by forming hybrid solid solutions.
更多
查看译文
关键词
perovskite,thin films,storage,ba<sub>085</sub>ca<sub>015</sub>zr<sub>01</sub>ti<sub>09</sub>o<sub>3</sub>‐zno
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要