Successfully and efficiently training deep multi-layer perceptrons with logistic activation function simply requires initializing the weights with an appropriate negative mean.

Neural networks : the official journal of the International Neural Network Society(2022)

引用 5|浏览15
暂无评分
摘要
The vanishing gradient problem (i.e., gradients prematurely becoming extremely small during training, thereby effectively preventing a network from learning) is a long-standing obstacle to the training of deep neural networks using sigmoid activation functions when using the standard back-propagation algorithm. In this paper, we found that an important contributor to the problem is weight initialization. We started by developing a simple theoretical model showing how the expected value of gradients is affected by the mean of the initial weights. We then developed a second theoretical model that allowed us to identify a sufficient condition for the vanishing gradient problem to occur. Using these theories we found that initial back-propagation gradients do not vanish if the mean of the initial weights is negative and inversely proportional to the number of neurons in a layer. Numerous experiments with networks with 10 and 15 hidden layers corroborated the theoretical predictions: If we initialized weights as indicated by the theory, the standard back-propagation algorithm was both highly successful and efficient at training deep neural networks using sigmoid activation functions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要