Chrome Extension
WeChat Mini Program
Use on ChatGLM

Metal ion-regulated assembly of designed modular protein cages

SCIENCE ADVANCES(2022)

Cited 4|Views10
No score
Abstract
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.
More
Translated text
Key words
modular protein cages,assembly,metal
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined