Confined Co9S8 nanocrystals into N/S-Co-doped carbon nanofibers as a chainmail-like electrocatalyst for high-performance lithium-sulfur batteries with high sulfur loading.

Journal of colloid and interface science(2022)

引用 0|浏览8
暂无评分
摘要
Accelerating phase transposition efficiency of lithium polysulfides (LiPSs) to L2S and hampering the solution of LiPSs are the keys to stabilizing lithium-sulfur (Li-S) batteries. Hence, the sulfiphilic ultrafine Co9S8 nanoparticles embedded lithiophilic N, S co-doping carbon nanofibers (Co9S8/NSCNF) are prepared via the dual-template method, which are then used as sulfur host in Li-S batteries. Particularly, the double active sites (Co9S8 and N, S) in Co9S8/NSCNF are prone to form "Co-S", "Li-O" or "Li-N" bonds, and then simultaneously improving the chemisorption and interface transposition capability of LiPSs. In case of the S@ Co9S8/NSCNF composites with high sulfur loading of 89% are employed as cathode, the cell possesses optimized "sulfiphilicity" and "lithiophilicity", which achieves remarkable sulfur electrochemistry, including outstanding reversibility of 816.8mAhg-1 over 500 cycles at 1.0C, excellent rate property of 742.2mAhg-1at 5.0C, and long-term cycling with a low attenuation of 0.011% per cycle over 1800 cycles at 3.0C. Impressively, a remarkable areal capacity of 11.51mAhcm-2 is retained under the sulfur loading of 15.3 mg cm-2 for 50 cycles. This research will deepen the understanding of the complex LiPSs interface transposition procedure and provide new ideas for the design of new host materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要