MmCMS: Mouse models’ Consensus Molecular Subtypes of colorectal cancer

British Journal of Cancer(2022)

Cited 5|Views28
No score
Abstract
BACKGROUND Colorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue. METHODS Using transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n=577) and mouse (n=57 across n=8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers. RESULTS We developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours. CONCLUSIONS When applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package with three options helps researchers select suitable mouse models of human CRC subtype for their experimental testing. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined