Chrome Extension
WeChat Mini Program
Use on ChatGLM

Nonlinear dynamics of the energy landscape in Frenkel exciton-polariton condensates

Nonlinear Optics and Applications XII(2021)

Cited 0|Views13
No score
Abstract
Bose-Einstein condensates of exciton-polaritons in inorganic semiconductor microcavities are known to possess strong interparticle interactions attributed to their excitonic component. The interactions play a crucial role in the nonlinear dynamics of such systems and can be witnessed as the high energy shift of polariton states. However, the localised nature of Frenkel excitons in strongly coupled organic microcavities precludes interparticle Coulomb exchange-interactions that affect nonlinear dynamics and change mechanisms of polariton energy shifts accordingly. We have scrutinized the origins of energy shifts in connection with nonlinear dynamics in Frenkel exciton-polariton condensates and examined the possible contributions: intracavity optical Kerr-effect, gain-induced frequency pulling, polariton interactions and effects related to saturation of optical transitions for "dark"- and "bright" molecules [1]. Unlike the conventional strongly coupled semiconductor microcavities, we have shown that nonlinear interactions within the condensate do not rely on polariton interactions but instead originated from Pauli-blocking principle forbidding double excitation of the same molecular states. We have developed a theoretical model explaining the omnipresent energy shift of the condensate wavefunction together with its spectral and polarization features at the BEC transition in a consistent way. The crucial role of intermolecular energy transfer and “dark” exciton reservoir has been demonstrated for the first time. We believe the principles explored in this work are relevant to other systems exhibiting strong coupling of Frenkel excitons with a cavity mode, regardless of a cavity type, whether one dealing with Fabry-Perot cavities or plasmonic nanocavities etc and; therefore, provide general insight on nonlinear phenomena in composite light-matter condensates. [1] T. Yagafarov, D. Sannikov, A. Zasedatelev, K. Georgiou, A. Baranikov, O. Kyriienko, I. Shelykh, L. Gai, Z. Shen, D. G. Lidzey, P. Lagoudakis, Mechanisms of blueshifts in organic polariton condensates, Commun Phys 3, 18 (2020). https://doi.org/10.1038/s42005-019-0278-6
More
Translated text
Key words
Polariton Condensation,Bose-Einstein Condensation,Exciton-Polariton
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined