Creation of bilateral structures of macroporous silicon with nanocoatings for solar cells

Himia, Fizika ta Tehnologia Poverhni(2021)

引用 0|浏览2
暂无评分
摘要
We have proposed a new technological solution for the creation of solar energy elements using bilateral structures of macroporous silicon to increase the overall efficiency of converting light energy into electricity. Recently, the research on R&D in solar cell technology has focused mainly on crystalline silicon technologies and photovoltaic systems, including organic ones. The main physical phenomenon that determines the prospects of two-dimensional structures of macroporous silicon with nanocoatings as solar cells is the increase in absorption of electromagnetic radiation and photoconductivity as a result of interaction of optical modes with the developed surface of cylindrical macropores with a barrier on the nanocoating-surface boundary. We fabricated two-sided macroporous silicon structures with nanocoatings for solar cells, including silicon technology, organic nanoformations, and photovoltaic system formation. Silicon is a promising material for the manufacture of structures with a cylindrical geometry of air macropores due to the anisotropy of the cheap process of photoelectrochemical etching. The presence of periodically located cylindrical pores separated by silicon columns provides a large effective surface of the samples and enhanced optical and photophysical characteristics of silicon structures. Polymer composites with nanocoatings with CdS nanocrystals and multilayer carbon nanotubes in polyethyleneimine generate charges of opposite sign on both surfaces of the structures under illumination. The formation of bilateral structures of macroporous silicon with nanocoatings increases the overall energy conversion efficiency in solar cells by up to 60 %. In addition, one can use our proposed solar cells in the upper atmosphere.
更多
查看译文
关键词
macroporous silicon,nanocoatings
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要