Probing UHECR and cosmic ray ensemble scenarios with a global CREDO network

37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021(2022)

引用 0|浏览9
暂无评分
摘要
Among theoretical approaches in unveiling the physics of ultra-high-energy cosmic rays (UHECR) one can distinguish the models assuming interactions of exotic super-heavy matter (including extra dimensions, Lorentz invariance violation, cosmic strings, dark matter particles or particles beyond the standard model etc.) and acceleration scenarios describing processes, in which the particles are accelerated by a particular astrophysical object (shocks in relativistic plasma jets, unipolar induction mechanisms, second-order Fermi acceleration, energy transfer from black holes or compact stars etc.). Primary UHECR particles can produce cascades already above the Earth atmosphere, which may be detected as the so-called cosmic ray ensembles (CRE) - the phenomena composed of at least two cosmic ray particles, including photons, with a common primary interaction vertex or the same parent particle with correlated arrival directions and arrival times. In this contribution, we give a brief description of a novel approach to the probing of cosmic ray scenarios with the global Cosmic Ray Extremely Distributed Observatory (CREDO) network.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要