Measurements During Drilling Through an Innovative Microchip Technology to Determine Accurate Wellbore Properties for Efficient Drilling Operations

Day 3 Thu, September 23, 2021(2021)

引用 0|浏览2
暂无评分
摘要
Abstract The measurement of the drilling parameters such as temperature and pressure helps mitigate drilling-related issues and optimize drilling operations on a cost-effective basis. Multiple technologies can measure these parameters; however, the current tools suffer from low bandwidth, associated high cost, and limited measurement locations near the drill bit. This reduced accuracy and transmission rate while drilling can be improved using intelligent microchip tracers and micro-memory balls. These tools can measure the temperature and pressure across an entire wellbore. The proposed tracers include a microprocessor-based circuit board equipped with sensors, a communication antenna, and a rechargeable battery, all protected from the harsh downhole environment through a robust composite material. The advanced microchip tracers and micro-memory ball technologies were tested in the field and provided innovative measurement platforms. The field tests were conducted in various environments, including oil and gas wells, deviated wells, multiple hole sizes, varied fluid densities, and different BHA (Bottom Hole Assembly) geometries. During the operation procedures, the tracers travel in the drilling strings through the drill bit and return to the surface across the annulus. The data is then exported from the tracers for a quasi-real-time analysis. The results showed high success rates, four out of six microchips were successfully retrieved, and the data was made available for immediate analysis. This paper explains the challenges faced during the logging and interpretation of the data needed to define the wellbore characteristics for efficient drilling processes. The developed time-stepping algorithm correlates the measurement timestamp with the calculated depth. Lastly, the report summarizes the highlights of the tracers in terms of density, release mechanism, and collection method.
更多
查看译文
关键词
efficient drilling operations,accurate wellbore properties,innovative microchip technology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要