EMC Measurement Setup Based on Near-Field Multiprobe System

Recent Topics in Electromagnetic Compatibility(2022)

Cited 0|Views3
No score
Abstract
Multiprobe spherical near-field measurement is a potent tool for fast and accurate characterization of electrical properties of antennas. The use of fast switching in one axis, an azimuth positioner, and a near- to far-field transformation allows a substantial time reduction in antenna measurements while maintaining high-quality results. On the other hand, conventional emissions EMC measurement systems are typically based on detecting the radiated spurious emissions by a device at different frequencies. The systems usually work in far-field (or quasi-far-field conditions), performing the measurements either at 3 or 10 meters. Measurements under these conditions take space and time. Moreover, the systems are not cost-effective for pre-compliance purposes where pre-testing of the device should provide valuable information and confidence about the DUT before performing a compliance test. This chapter analyzes the possibility of cost and space reduction for EMC systems based on multiprobe near-field measurement systems in combination with OTA (over the air measurements), reference-less systems, spherical near-field transformation, phase reconstruction, modal filtering, source reconstruction, and software-defined radio receivers.
More
Translated text
Key words
emc measurement setup,near-field
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined